Respuestas

  • Usuario de Brainly
2012-11-13T23:15:37+01:00

SOLO TE DARÉ EL PROCEDIMIENTO PARA QUE APRENDAS HACERLO:
Dada la función : 
F(x) = x^4 - 2x^2
Derivas:
F´(x) = 4x³ - 4x
Igualas a cero:
4x³-4x = 0
El factor común es:
4x(x² - 1) = 0
1 Cuáles son los puntos críticos
Cada factor lo igualas a CERO:
4x= 0 —> x1= 0
(x² -1)= 0
x²= 1 —> x2 =± 1
2 Cuáles son los intervalos de crecimiento y decrecimiento?
Da valores próximos hacia abajo y hacia arriba de ± 1 y de CERO, uno por uno y se calculan los signos de la primera derivada. Esto hazlo en la Derivada que obtuviste: F´(x) = 4x³ - 4x = 4x(x² -1) 
Así ves el rango y lo mismo si es un máximo o un mínimo. Si el signo es positivo cambia a - , es un Máximo. Lo contrario si cambian de signo.
3. Hallar los puntos de inflexión.
Recuerda que los puntos de inflexión son donde la curva cambia de signo o de concavidad. Obtén la segunda derivada de la función:
F´(x) = 4x³ - 4x 
F” (x) = 12x² - 4
Igualas a CERO para obtener las raíces
4(3x²-1) = 0
3x² = 1
x² =1/3 —> x = ±√1/3
Observas al dar valores a la segunda derivada menores y mayores que los valores que hayas obtenidos cambia de signo. SI al dar un valor menor la segunda derivada es ( +) Tienes un cambio de concavidad o sea un PUNTO DE INFLEXIÓN.
4 .Calcular los intervalos de concavidad
AL hacer lo anterior obtienes el intervalo
5. Hacer un bosquejo de la gráfica
Haces una tabulación Para obtener las abscisas y las ordenadas, dadno valores a x para obtener los de Y.

X|Y