Respuestas

2012-08-23T22:15:12+02:00

Primer problema:

lim (√x -1) / (x-1)
x→1

Si sustituimos x = 1 da una indeterminación 0/0. Racionalizamos el numerador multiplicando por √x +1 tanto en el numerador como en el denominador:

lim [(√x -1)(√x +1)] / [(x-1)(√x +1)]
x→1

El numerador tiene ahora un producto de binomios conjugados, que al multiplicarse dan una diferencia de cuadrados:

lim [(√x)² -1²)] / [(x-1)(√x +1)]
x→1

lim (x -1) / [(x-1)(√x +1)]
x→1

Simplificando x-1:

lim 1 / (√x +1)
x→1

Sustituyendo x = 1

= 1/(√x +1) = 1/2

~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~

Segundo problema

lim (2x²-x-3) / (x³+2x²+6x+5)
x→-1

Sustituyendo x = -1 nos da 0/0

Factorizando el polinomio 2x²-x-3 = (2x+a)(x+b), se buscan dos números a y b que multiplicados den -3, tal que 2b+a = -1. Esos números son -3 y 1

lim [(2x-3)(x+1)] / (x³+2x²+6x+5)
x→-1

Esto significa que el polinomio x³+2x²+6x+5 tiene alguno de los factores (2x-3) o (x+1), puesto que es lo que provoca la indeterminación. Probando si es divisible entre x+1, por division sintética:

. . | 1 . 2 . 6 . 5
-1 | . . -1 .-1 .-5
----------------------
. .. 1 . 1 . 5 . 0

El residuo es cero y el poinomio x³+2x²+6x+5 = (x+1)(x²+x+5)

lim [(2x-3)(x+1)] / [(x+1)(x²+x+5)]
x→-1

Simplificando el factor x+1:

lim (2x-3) / (x²+x+5)
x→-1

Sustituyendo x = -1

= (2(-1)-3) / ((-1)²+(-1)+5)

= (-2-3) / (1-1+5)

= -5 / 5

= -1

~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~

Tercer problema:

lim (x³-x²-x+10) / (x²+3x+2)
x→ -2

Factorizando x²+3x+2 = (x+2)(x+1), se concluye que x³-x²-x+10 debe ser divisible entre el factor x+2, que es el que provoca la indeterminación al sustituir x = -2. Usando división sintética 

. . | 1 .-1 .-1 . 10
-2 | . . -2 . 6 .-10
------------------------
. . . 1 .-3 . 5 .. 0

lim [(x²-3x+5)(x+2)] / [(x+2)(x+1)]
x→ -2

lim (x²-3x+5) / (x+1)
x→ -2

Sustituyendo x = -2

= ((-2)²-3(-2)+5) / ((-2)+1)

= (4+6+5) / (-1)

= -15