Respuestas

2012-02-26T22:47:24+01:00

La definición general de función hace referencia a la dependencia entre los elementos de dos conjuntos dados.

Dados dos conjuntos A y B, una función (también aplicación o mapeo) entre ellos es una asociación2 f que a cada elemento de A le asigna un único elemento de B. Se dice entonces que A es el dominio (también conjunto de partida o conjunto inicial) de f y que B es su codominio (también conjunto de llegada o conjunto final).

Esta definición es precisa, pero existe una definición formal más rigurosa, que construye las funciones como un objeto concreto.

Ejemplos

Todos los números reales tienen un cubo, por lo que existe la función «cubo» que a cada número en el dominio R le asigna su cubo en el codominio R. Exceptuando al 0, todos los números reales tienen un único inverso. Existe entonces la función «inverso» cuyo dominio son los números reales no nulos R \ {0}, y con codominio R. Existe una función «área» que a cada triángulo del plano (en la colección T de todos ellos, su dominio), le asigna su área, un número real, luego su codominio es R. En unas elecciones en las que cada votante pueda emitir un único voto, existe una función «voto» que asigna a cada elector el partido que elija. En la imagen se muestra un conjunto de electores E y un conjunto de partidos P, y una función entre ellos.