Respuestas

2012-08-10T23:49:29+02:00
COMIENZOS   Hasta el siglo XVII, la teoría de ecuaciones estuvo limitada pues los matemáticos no fueron capaces de aceptar que los números negativos y complejos podían ser raíces de ecuaciones polinómicas. Sólo los antiguos matemáticos indios, como Brahmagupta, conocían las raíces negativas, pero fuera de China e India no se trabajaba con coeficientes negativos en los polinomios. En vez de un solo tipo de ecuación de segundo grado, el mencionado más arriba, había seis tipos distintos, según cuáles fueran los coeficientes negativos. 

Un método de resolución de ecuaciones que puede encontrarse en antiguos libros egipcios y chinos, es el de la falsa posición. Por ejemplo, para resolver la ecuación x + x/7 = 19, primero se toma una aproximación de la x que simplifique el cálculo del primer término, como x = 7. Al sustituir la x por 7 en esta ecuación, el resultado es 8 en vez de 19. Por tanto, se necesita un factor corrector que se obtiene dividiendo 19 por 8. Este factor, 2, se multiplica por el primer valor, 7, con lo que se encuentra que la raíz de la ecuación original es 16š. Los egipcios utilizaban el método de la falsa posición para encontrar una raíz en ecuaciones de segundo grado sencillas. Para ecuaciones cuadráticas con un término en x, como x2 - 5x = 6, las primeras soluciones no se encuentran hasta en los libros de matemáticas babilonios del 2000 a.C. Aunque los babilonios no conocían las raíces negativas ni las complejas, su método de búsqueda de las raíces positivas reales es el mismo que se utiliza en la actualidad.

Otro importante descubrimiento del mundo antiguo, que se puede encontrar en los escritos del matemático y científico griego Herón de Alejandría en el siglo I, es un método de aproximación de la raíz positiva de ecuaciones como x2 = 2. En este método, primero se toma una aproximación como  para calcular una nueva aproximación utilizando la regla [ + 2/()]/2, o 17/12. Si se repite este procedimiento se obtiene 577/408, que es una buena aproximación de Ã. Estas aproximaciones y cálculos repetidos se denominan iteraciones. Un método iterativo muy útil, que se encuentra en los trabajos de los matemáticos chinos Liu Hui (en el siglo III) y Chu Shih-Chieh (en el siglo XIII), fue redescubierto en Europa hacia 1800 por el matemático inglés W. G. Horner. También había sido usado por el matemático árabe Yamschid al-Kaschi. Entre otros matemáticos árabes que hicieron importantes contribuciones a la teoría de ecuaciones se incluyen al-Jwarizmi y Omar Jayyam, que desarrollaron la primera teoría de las ecuaciones cúbicas. Sin embargo, esta teoría estaba definida en términos geométricos y era, por tanto, incompleta.