Respuestas

2012-07-27T05:28:26+02:00

\lim_{x \to 0-} \frac{e^{x}(e^{x}+1)}{1+e^{x}}

 

Derivando el dividendo y el divisor

 

\lim_{x \to 0-} \frac{e^{x}(e^{x}+1)+e^{x}e^{x}}{e^{x}}

 

\lim_{x \to 0-} \frac{e^{x}(e^{x}+1)+e^{2x}}{e^{x}}

 

\lim_{x \to 0-} \frac{e^{x}(e^{x}+1+e^{x})}{e^{x}}

 

\lim_{x \to 0-} \frac{e^{x}(2e^{x}+1)}{e^{x}}

 

\lim_{x \to 0-} 2e^{x}+1=2(1)+1=3

 

espero te sirva....