1) Los costos fijos semanales por la producción de cierto artículo es de
$200 y el costo variable por unidad es de $0,70. La empresa puede vender x
unidades a $p por unidad en donde 2p = 5 – 0,001x.


(a) ¿Cuántas
unidades deben venderse para obtener el ingreso máximo? ¿Cuál es ingreso
máximo?.

(b) ¿Cuántas unidades deben
venderse y producirse para obtener el beneficio máximo? ¿Cuál es este
beneficio?

1

Respuestas

¡La mejor respuesta!
2014-02-13T08:24:11+01:00
A). 2p = 5 - 0.001x
Ingresos Totales
IT (X) = x(5 - 0.001x) = -0.001x (al cuadrado)
Primera Derivada
IT¨ = -0.002x + 5

despejando x

x = -5 / -0.002
x = 2500

2500 es la cantidad que se debe de vender para obtener el ingreso Máximo.

b). Maximo beneficio = ingresos totales + ingresos marginales

Precio = 5 - 0.001(2500) = 5 - 2.5 = 2.5 / 2 = 1.25

IT = precio x cantidad = 1.25 x 2500 = 3125

IM = -0.002

Maximo beneficio = 3125 - 0.002 = 3124.998

Espero te sirva, no es mi área de estudio pero ahi estamos ayudando