Respuestas

2014-02-11T03:18:13+01:00
La fosforilación oxidativa es la transferencia de electrones de los equivalentes reducidos NADH, NADPH, FADH, obtenidos en la glucólisis y en el ciclo de Krebs hasta el oxígeno molecular, acoplado con la síntesis de ATP. Este proceso metabólico está formado por un conjunto de enzimas complejas que catalizan varias reacciones de óxido-reducción, donde el oxígeno es el aceptor final de electrones y donde se forma finalmente agua. 

La fosforilación oxidativa es un proceso bioquímico que ocurre en las células. Es el proceso metabólico final (catabolismo) de la respiración celular: la glicólisis y el ciclo del ácido cítrico. De una molécula de glucosa se obtienen 38 moléculas de ATP mediante la fosforilación oxidativa. 

Dentro de las células, la fosforilación oxidativa se produce en las membranas biológicas. En procariotas es la membrana plasmática y en eucariotas es la membrana interna de las dos que forman la membrana mitocondrial. El NADH y FADH2, moléculas donadores de electrones que "fueron cargadas" durante el ciclo del ácido cítrico, se utilizan en un mecanismo intrincado (que implica a numerosas enzimas como la NADH-Q reductasa, la citocromo c oxidasa y la citocromo reductasa), gracias a la bomba H+ que moviliza los protones contra un gradiante de membrana. 

Un gran complejo proteico llamado ATP-sintetasa situado en la membrana, permite a los protones pasar a través en ambas direcciones; genera el ATP cuando el protón se mueve a favor de gradiente, y consume una molécula de ATP para bombear un protón en contra de gradiente. Debido a que los protones se han bombeado al espacio intermembranoso de la mitocondria en contra de gradiente, ahora pueden fluir nuevamente dentro de la matriz mitocondrial y mediante la vía ATP-sintetasa, se genera ATP en el proceso. La reacción es: 
ADP3- + H+ + Pi ↔ ATP4- + H2O 

Cada molécula de NADH contribuye suficientemente a generar la fuerza motriz de un protón que produzca 2.5 moléculas de ATP. Cada molécula de FADH2 produce 1.5 moléculas de ATP. Todas juntas, las 10 moléculas de NADH y las 2 FADH2 contribuyen a través de la oxidación de la glucosa (glucólisis, conversión de piruvato en acetil-CoA y ciclo de Krebs) a formar 34 de las 30 moléculas totales de ATP transportadoras de energía. Hay que decir que estos valores de moléculas de ATP son máximos. En realidad cada molécula de NADH contribuye a formar entre 2 y 3 moléculas de ATP, mientras que cada FADH2 contribuye a un máximo de 2 moléculas de ATP.
2014-02-11T03:21:05+01:00
La respiración celular constituye el proceso más importante dentro de la célula, el cual abordaremos en pequeña medida pero de manera significativa.Esta investigación toma en cuenta a todos aquellos que de alguna manera participan aunque sea de forma mínima en la respiración celular.Hablar de respiración celular es referirnos a un proceso bioquímico del cual nos ramificaremos a dos tipos de respiración celular: aeróbica y anaeróbica.En este proceso interfieren factores químicos capaces de ser procesados dentro de las células, y que en gran medida constituyen las bases para que la respiración celular se lleve a cabo. RESPIRACIÓN CELULAR La respiración celular es el conjunto de reacciones bioquímicas que ocurren en la mayoría de las células. También es el conjunto de reacciones químicas mediante las cuales se obtiene energía a partir de la degradación de sustancias orgánicas, como los azúcares y los ácidos principalmente. Comprende dos fases: * PRIMERA FASE: Se oxida la glucosa (azúcar) y no depende del oxígeno, por lo que recibe el nombre de respiración anaeróbica y glucolisis, reacción que se lleva a cabo en el citoplasma de la celula. * SEGUNDA FASE: Se realiza con la intervención del oxígeno y recibe el nombre de respiración aeróbica o el ciclo de krebs y se realiza en estructuras especiales de las células llamadas mitocondrias. Tanto que es una parte del metabolismo, concretamente del catabolismo, en el cual la energía contenida en distintas biomoléculas, como los glúcidos (azúcares, carbohidratos), es liberado de manera controlada. IMPORTANCIA: - Crecimiento - Transporte activo de sustancias energéticas - Movimiento, ciclosis - Regeneración de células - Síntesis de proteínas - División de células TIPOS DE RESPIRACIÓN CELULAR RESPIRACIÓN ANAERÓBICA: La respiración anaeróbica es un proceso biológico de oxidorreducción de azúcares y otros compuestos. Lo realizan exclusivamente algunos grupos de bacterias. En la respiración anaeróbica no se usa oxígeno sino para la misma función se emplea otra sustancia oxidante distinta, como el sulfato.No hay que confundir la respiración anaeróbica con la fermentación, aunque estos dos tipos de metabolismo tienen en común el no ser dependiente del oxigeno. Todos los posibles aceptores en la respiración anaeróbica tienen un potencial de reducción menor que el O2, por lo que se genera menor energía en el proceso. ETAPAS: * Glucólisis * Fermentación GLUCÓLISIS .- También denominado glicólisis, es la secuencia metabólica en la que se oxida en la glucólisis, cuando hay ausencia de oxígeno, la glucólisis es la única vía que produce ATP en los animales. Está presente en todas las formas de vías actuales. Es la primera parte del metabolismo energético y en las células eucariotas en donde ocurre el citoplasma. Por lo tanto es una secuencia compleja de reacciones que se efectuan en el citosol de una celula mediante las cuales una molécula de glucosa se desdobla en dos moléculas de acido piruvico. De manera que la glucolisis consta de dos pasos principales: *Activacion de la glucosa. * Producción de energía.