Respuestas

2012-05-29T02:10:37+02:00

int(x(2x+1)^1/2)dx) en este tipo de integrales toca hacer un cambio de variables

u=2x+1 si derivamos respecto a x

du=2dx de donde dx=du/2 y tambien del camio de variable despejamos a x

x=(u-1)/2 y reeemplazamos todo esto en la nueva integral y queda

int(((u-1)/2)*u^(1/2)*du/2) multiplicamos aplicando distributiva y queda

int(1/4*(u^(3/2)-u^(1/2))du esta integral ya es sencilla basta con sumarle una unidad al exponente y dividir por dicho exponente y queda

(1/4)*(u^(5/2)*2/5-u^(3/2)*2/3+c y simplificando y regresando a la variable original queda

(5/8)*(2x+1)^(5/2)-(1/6)*(2x+1)^(3/2)+ c

y listo si queres deriva y te tiene que dar la integral inicial