Respuestas

2012-05-18T17:06:42+02:00

Si b > 0 y b 1, entonces la función exponencial de base b está definida por f(x ) = bx , donde su dominio es el conjunto de los números reales y su rango es el conjunto de los números positivos.

Tal como se hizo con las funciones anteriores, vamos a trazar su gráfica, obtener algunos elementos importantes para su estudio y hacer su análisis.

 

Antes de dar un ejemplo de función exponencial, conviene recordar algunas propiedades de las potencias:

 

1. La función y = 2x es una función exponencial de base 2. Algunos de los valores

 

1a. Para x = 0, la función toma el valor 1: f(0) = a0 = 1

2a. Para x = 1, la función toma el valor a: f(1) = a1 = a

3a. La función es positiva para cualquier valor de x: f(x )>0.

Esto es debido a que la base de la potencia, a, es positiva, y cualquier potencia de base positiva da como resultado un número positivo.

4a . Si la base de la potencia es mayor que 1, a>1, la función es creciente.

5a. Si la base de la potencia es menor que 1, a<1, la función es decreciente.

 

Name=1; HotwordStyle=BookDefault; Observando las propiedades antes descritas para una función exponencial, se han de distinguir dos casos para hacer la representación de una función y = ax :

A) a > 1

En este caso, para x = 0, y = a0 = 1

para x = 1, y = a1 = a

para cualquier x, la función es creciente y siempre positiva.

Como caso particular se representa la función y = 2x.

B) a < 1

Para x = 0, y = a0 = 1

Para x = 1, y = a1 = a

Para cualquier x la función es decreciente y siempre positiva.

Hacer la gráfica de la función exponencial f(x) = 2x

Tabulando para algunos valores cercanos a cero, por ejemplo en el intervalo comprendido entre [-3, 3].

x y

 

3 2-3 = 0.125

-2 2-2 = 0.25

-1 2-1 = 0.5

0 20 = 1

1 21 = 2

3 32 = 9