Respuestas

2013-09-21T02:17:15+02:00
Si 2 rectas son perpendiculares, entonces el producto de sus pendientes es igual a -1.
Ahora si tenemos la ecuacion: AX + BY +C = 0; entonces la pendiente es igual a -A/B.
Sea L1: y = (-2/3)x  ----> 2x +3y = 0 ----> m1 = -2/3
Luego sea la pendiente de la recta buscada: m2.
--->   (m2)(m1)=-1
         (m2)(-2/3)=-1   ------>     m2 = 3/2

Como L2 pasa por el punto (-3; -5); se tiene:
----> L2:   [y-(-5)]/[x-(-3)]=3/2
               y+5=(3/2)(x+3)
               2y + 10 = 3x + 9
---->    L2:   3x -2y -1 = 0
2013-09-21T02:17:37+02:00
y-  y_{1} =m(x- x_{1} )

m = 3/2

y+5= \frac{3}{2} (x+3) .......... reduciendo

2y+10=3x+9 ...................... reduciendo y reacomodando términos

3x-2y-1 ........... es la ecuación buscada.