Respuestas

2012-05-04T20:13:14+02:00

eso es estadistica y dependera de los datos que te den 

por ejemplo:

 tema genetica:

 

una familia desea tener 2 hijos cual es la probabilidad de que uno sea niña y el otro baron.

 

la respuesta sera de 1/2 de cada uno

interpretado: la probabilidad sera de 50% baron 50% niña

 

ahora si te dicen cual es la probabilidad de tener primero un niño luego una niña y por ultimo un baron

 

lo puedes calcular de la siguiente forma:

1 por el metodo factorial

2 por el metodo binomial

3 por el metodo estadistico (ojo: eso es cuando te dan una tabla de estadisticas descriptivas y no aplica para este caso:

 

veamos: lo hare por el metodo binomial.

asi que recuerda el triangulo de pascal

 A=niño

 B=niña

 

formula:

(A+B)^n donde: A=niño B=niña n=numero de datos (en este caso 2)

 

aplicando la formula quedara asi:

 

(a+b)^2 = a^2 + 2ab + b^2

 

pero nos piden solamente y en orden un niño y luego una niña: veamos cual tiene esos datos verdad que 3a^2b es primero un niño luego una niña ¿me sigues?

 

aplicando eso: 2(1/2)(1/2) = 1/2 = 0.50 = 50% de tener primero un niño luego una niña.

 

PD: ^este signo significa que esta: "elevado a la x"

 

te sugiero que investigues los demas metodos y otros temas en los que se aplica las probabilidades

 

2012-05-04T22:19:11+02:00

Yo te ayudo.

Probabilidad    

La probabilidad mide la frecuencia con la que se obtiene un resultado (o conjunto de resultados) al llevar a cabo un experimento aleatorio, del que se conocen todos los resultados posibles, bajo condiciones suficientemente estables. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la física, la matemática, la ciencia y la filosofía para sacar conclusiones sobre la probabilidad discreta de sucesos potenciales y la mecánica subyacente discreta de sistemas complejos.

 

Historia Artículo principal: Azar.

El diccionario de la Real Academia Española define «azar» como una casualidad, un caso fortuito, y afirma que la expresión «al azar» significa «sin orden».1 La idea de Probabilidad está íntimamente ligada a la idea de azar y nos ayuda a comprender nuestras posibilidades de ganar un juego de azar o analizar las encuestas. Pierre-Simon Laplace afirmó: "Es notable que una ciencia que comenzó con consideraciones sobre juegos de azar haya llegado a el objeto más importante del conocimiento humano". Comprender y estudiar el azar es indispensable, porque la probabilidad es un soporte necesario para tomar decisiones en cualquier ámbito.2

Según Amanda Dure, "Antes de la mitad del siglo XVII, término 'probable' (en latín probable) significaba aprobable, y se aplicaba en ese sentido, unívocamente, a la opinión y a la acción. Una acción u opinión probable era una que las personas sensatas emprenderían o mantendrían, en las circunstancias."3

Aparte de algunas consideraciones elementales hechas por Girolamo Cardano en el siglo XVI, la doctrina de las probabilidades data de la correspondencia de Pierre de Fermat y Blaise Pascal (1654). Christiaan Huygens (1657) le dio el tratamiento científico conocido más temprano al concepto. Ars Conjectandi (póstumo, 1713) de Jakob Bernoulli y Doctrine of Chances (1718) de Abraham de Moivre trataron el tema como una rama de las matemáticas. Véase El surgimiento de la probabilidad (The Emergence of Probability) de Ian Hacking para una historia de los inicios del desarrollo del propio concepto de probabilidad matemática.

La teoría de errores puede trazarse atrás en el tiempo hasta Opera Miscellanea (póstumo, 1722) de Roger Cotes, pero una memoria preparada por Thomas Simpson en 1755 (impresa en 1756) aplicó por primera vez la teoría para la discusión de errores de observación. La reimpresión (1757) de esta memoria expone los axiomas de que los errores positivos y negativos son igualmente probables, y que hay ciertos límites asignables dentro de los cuales se supone que caen todos los errores; se discuten los errores continuos y se da una curva de la probabilidad.

Pierre-Simon Laplace (1774) hizo el primer intento para deducir una regla para la combinación de observaciones a partir de los principios de la teoría de las probabilidades. Representó la ley de la probabilidad de error con una curva , siendo  cualquier error e y  su probabilidad, y expuso tres propiedades de esta curva:

es simétrica al eje ; el eje  es una asíntota, siendo la probabilidad del error  igual a 0; la superficie cerrada es 1, haciendo cierta la existencia de un error.

Dedujo una fórmula para la media de tres observaciones. También obtuvo (1781) una fórmula para la ley de facilidad de error (un término debido a Lagrange, 1774), pero una que llevaba a ecuaciones inmanejables. Daniel Bernoulli (1778) introdujo el principio del máximo producto de las probabilidades de un sistema de errores concurrentes.

El método de mínimos cuadrados se debe a Adrien-Marie Legendre (1805), que lo introdujo en su Nouvelles méthodes pour la détermination des orbites des comètes (Nuevos métodos para la determinación de las órbitas de los cometas). Ignorando la contribución de Legendre, un escritor irlandés estadounidense, Robert Adrain, editor de "The Analyst" (1808), dedujo por primera vez la ley de facilidad de error,

siendo  y  constantes que dependen de la precisión de la observación. Expuso dos demostraciones, siendo la segunda esencialmente la misma de John Herschel (1850). Gauss expuso la primera demostración que parece que se conoció en Europa (la tercera después de la de Adrain) en 1809. Demostraciones adicionales se expusieron por Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W. F. Donkin (1844, 1856) y Morgan Crofton (1870). Otros personajes que contribuyeron fueron Ellis (1844),De Morgan (1864), Glaisher (1872) y Giovanni Schiaparelli (1875). La fórmula de Peters (1856) para , el error probable de una única observación, es bien conocida.

En el siglo XIX, los autores de la teoría general incluían a Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion, y Karl Pearson. Augustus De Morgan y George Boole mejoraron la exposición de la teoría.

En 1930 Andréi Kolmogorov desarrolló la base axiomática de la probabilidad utilizando teoría de la medida.

En la parte geométrica (véase geometría integral) los colaboradores de The Educational Times fueron influyentes (Miller, Crofton, McColl, Wolstenholme, Watson y Artemas Martin).

Véase también: Estadística