Respuestas

¡La mejor respuesta!
2013-08-24T05:15:05+02:00
Actorizar: Es descomponer en el producto de sus factores una expresion algebraica

Estos son los 10 de Casos de Factorizacion
===================================

➀ Factorar un Monomio:

En este caso se buscan los factores en los que se puede descomponer el término

15ab = 3 * 5 a b




➁ Factor Común Monomio:

En este caso se busca algún factor que se repita en ambos términos

Como puedes ver la literal [ a ], esta en los 2 términos, por lo tanto, ese será tu factor común

a² + 2a = a ( a + 2 )




➂ Factor Común Polinomio:

x [ a + b ] + m [ a + b ]

En este caso en ambos términos el factor que se repite es [ a + b ], entonces lo puedes escribir como el factor del otro binomio

x [ a + b ] + m [ a + b ] = ( x + m ) ( a + b )




➃ Factor Común por Agrupación de Términos:
En este caso, tienes que ver que término tienen algo en común con otro término para agruparlo

ax + bx + ay + by = 

[ax + bx] + [ay + by]


Después de agruparlo puedes aplicar el Caso 2, Factor Común Monomio

[ax + bx] + [ay + by] = x(a + b) + y(a + b) 


Ahora aplicas el Caso 3, Factor Común Polinomio

x(a + b) + y(a + b) = (x + y) (a + b)




➄ Trinomio Cuadrado Perfecto a² ± 2ab + b² = (a + b)²

Se es trinomio cuadrado perfecto cuando cumple la siguiente regla:

☞El Cuadrado del 1er Termino ± 2 Veces el 1er Termino por el 2do + el Cuadrado del 2do Termino 


Factorar: m² + 6m + 9

m² + 6m + 9 
↓…………..↓
m..............3

➊ Sacamos la Raíz Cuadrada del 1er y 3er Término
[ m ] y [ 3 ] 


➋ Las Raíces las acomodas dentro de una paréntesis, y las separas con el signo [ + ], este signo se toma del 2do termino del trinomio, y solo falta que al binomio, que se formo le agregues el exponente [ 2 ], con esto te queda un Binomio de la Suma de 2 Términos elevados al Cuadrado

(m + 3)² 


Nota: 
Si el 2do. Signo del Trinomio hubiera sido [ - ], tu Binomio hubiera quedado (m - 3)² 




➌ Ahora aplica la Regla del TCP

(m + 3)² 

El Cuadrado del 1er Termino = m²

[ + ] 2 Veces el 1er Termino por el 2do; [2m] [3] = 6m

[ + ] el Cuadrado del 2do Termino; [3]² = 9 



➍ Junta los Términos

m² + 6m + 9; si es un TCP, ya que cumple la Regla






➅ Diferencia de Cuadrados Perfectos: a² - b² = (a - b) (a + b)

De una diferencia de cuadrados obtendrás 2 binomios conjugados (mismos términos diferente signo)

a² - b² = (a - b) (a + b)


4a² - 9 = (2a - 3) (2a + 3)





➆ Caso Especial de Diferencia de Cuadrados Perfectos:

Factorar (a + b)² - c²

(a + b)² - c² 


Nota: (a + b)² = (a + b) (a + b)


[(a + b) + c] [(a + b) - c]; quitamos paréntesis 


(a + b + c) (a + b – c)






➇ Trinomio de la Forma; x² + bx + c

Factorar x² + 7x + 12


➊ Abrimos 2 paréntesis, con las raíces de [ x² ], que es el 1er termino del trinomio 

(x.......) (x.......)



➋ Hay que buscar 2 números que sumados me den 7 y multiplicados me den 12

4 + 3 = 7

4 x 3 = 12



➌ Esos números son [ 4 ] y [ 3 ], ahora los acomodamos dentro de los paréntesis

(x + 4)(x + 3)



Esta será la Factorización: x² + 7x + 12 = (x + 4) (x + 3) 





➈ Trinomio de la Forma; ax² + bx + c

Factorar 6x² - x – 2 = 0

Pasos: 

➊ Vamos a multiplicar todos los términos del trinomio por el coeficiente de 1er , termino [ 6 ], en el 2do termino del trinomio, solo dejamos señalada la multiplicación

6x² - x – 2

36x² - [ 6 ] x – 12



➋ Abrimos 2 paréntesis, con las raíces de [ 36x² ], que es el 1er termino del trinomio equivalente

(6x.......) (6x.......)



➌ Basándonos en los coeficientes del 2do termino [ - 1 ] y en el 3er termino del trinomio [ - 12 ], vamos a buscar 2 numero que sumados me den [ - 1 ] y multiplicados [ - 12 ]


➍ Esos numero son [ - 4 y 3 ] 

- 4 + 3 = - 1

[ - 4] [ 3 ] = - 12



➎ Ahora colocamos los números encontrados dentro de los paréntesis

(6x - 4) (6x - 3)



➏ Como se puede ver, los coeficientes, dentro de los binomios, son múltiplos, por lo que hay que reducirlos

(6x - 4) (6x - 3) = (3x - 2) (2x - 1)


Esta será la Factorización: 6x² - x – 2 = (2x+1) (3x-2)




➉ Suma o Diferencia de Cubos: a³ ± b³


Suma de Cubos:
============

a³ + b³ = (a + b) (a² - ab + b²)


Se resuelve de la siguiente manera

El binomio de la suma de las raíces de ambos términos (a + b) 


El cuadrado del 1er termino, [ a² ]


[ - ] el producto de los 2 términos [ ab ] 


[ + ] El cuadrado del 2do termino; [ b² ] 






Diferencia de Cubos:
==============

a³ - b³ = (a - b) (a² + ab + b²)


Se resuelve de la siguiente manera

El binomio de la resta de las raíces de ambos términos (a - b) 


El cuadrado del 1er termino, [ a² ]


[ + ] el producto de los 2 términos [ ab ] 


[ + ] el cuadrado del 2do termino; [ b² ] 
2013-08-24T05:16:10+02:00
Caso I - Factor común 

Sacar el factor común es extraer la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes.

Factor común monomio 

Factor común por agrupación de términos

ab + ac + ad = a ( b + c + d) 
ax + bx + ay + by = (a + b )( x + y ) 

Factor común polinomio 

Primero hay que sacar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente) para luego operar; ejemplo:

ab - bc = b(a-c) 

Caso II - Factor común por agrupación de términos 

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos. Para resolverlo, se agrupan cada una de las características, y se le aplica el primer caso, es decir:

ab+ac+bd+dc = (ab+ac)+(bd+dc)
= a(b+c)+d(b+c)
= (a+d) (b+c)

Caso III - Trinomio cuadrado perfecto 

Se identifica por tener tres términos, de los cuales dos tienen raíces exactas, y el restante equivale al doble producto de las raíces. Para solucionar un T.C.P. debemos organizar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separandolos por el signos que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado. Ejemplo:

(45x-37y)^26564 = 25x^2-30xy+9y^2
(67x+25y)^2456 = 9x^2+12xy+4y^2
(5x+7y)^256 = x^2+2xy+y^2
867x^2+25y^2456-67567xy

Organizando los términos tenemos

467x^2 - 5675xy + 567y^2

Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:

( 2x - 5y )^2

Caso IV - Diferencia de cuadrados 

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma), uno positivo y otro negativo. En los paréntesis deben colocarse las raíces. Ejemplo:

(9y^2)-(4x^2)=(3y-2x)(3y+2x)

Caso V - Trinomio cuadrado perfecto por adición y sustracción 

Se identifica por tener tres términos, dos de ellos son cuadrados perfectos, pero el restante hay que completarlo mediante la suma para que sea el doble producto de sus raíces, el valor que se suma es el mismo que se resta para que el ejercicio original no cambie. Para solucionarlo, se usan como ayuda los casos número III y IV. para moldar debe de saber el coseno de la raíz de la suma de dos polimo x que multiplicado sale igual a la raíz de 2.

- caso Trinomio de la forma x2 + bx + c 

Se identifica por tener tres términos, hay una literal con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis,en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados o restados den como resultado el término del medio.