UN TRONCO DE CONO INSCRITO EN UN CILINDRO, DETERMINAR LA RELACION DE LOS RADIOS DE LAS BASES DEL TRONCO DE CONO PARA QUE EL VOLUMEN DE DICHO TRONCO SE LA MITAD DEL VOLUMEN DEL CILINDRO

1
Comentario ha sido eliminado
cuanto te salio
a mi me salio (raíz(3)-1)/2
el procedimiento es mucho
me da flojera copiarlo

Respuestas

  • preju
  • Moderador Profesor
2013-08-18T13:03:20+02:00

Esta es una respuesta certificada

×
Las respuestas certificadas contienen información fiable, avalada por un equipo de expertos cuidadosamente seleccionados. En Brainly hay millones de respuestas de alta calidad, que han sido moderadas por los miembros más destacados de nuestra comunidad. Pero las respuestas certificadas son las mejores de las mejores.
Volumen del tronco de cono = (1/3)•π•h•(R² + r² + R•r)
Volumen del cilindro = π•r²•h

La expresión que he de escribir debe indicar que el volumen del tronco de cono debe ser la mitad que el volumen del cilindro y será así:


(1/3)•π•h•(R² + r² + R•r) = π•R²•h / 2
... siendo "R" el radio mayor del tronco de cono que coincidirá con el radio del cilindro y de aquí debo empezar a eliminar cosas a ver a dónde llego...

De momento, en los dos lados del signo "=" tengo
"π•h" así que eso desaparece y queda:
R² + r² + R•r      R²
—————— = —   ... multiplicando en cruz...
         3              2

2
R² +2r² +2R•r = 3R² -------> 2r² +2R•r = R² ...factor común de "2r"...

2r
•(r+R) = R²

              R²
(r+R) = ———
               2r

Y ya no puedo seguir. Llegué hasta aquí pero no sé si es lo que pide el ejercicio.

Saludos.