Respuestas

  • preju
  • Moderador Profesor
2013-07-14T10:54:35+02:00

Esta es una respuesta certificada

×
Las respuestas certificadas contienen información fiable, avalada por un equipo de expertos cuidadosamente seleccionados. En Brainly hay millones de respuestas de alta calidad, que han sido moderadas por los miembros más destacados de nuestra comunidad. Pero las respuestas certificadas son las mejores de las mejores.
Nos pide cuántos números y no qué números, o sea que hay que echar mano de la deducción... veamos...

El primer número de 3 cifras múltiplo de 7 es 105 que además también lo es de 3.

Ahora hemos de fijarnos que cada vez que sumamos 3 veces 7, o sea, como si multiplicáramos 7x3 = 21, al ser este número múltiplo de 3 también lo será el resultado de sumar ese 21 al primer múltiplo de 3 de tres cifras, es decir que tendremos como múltiplos simultáneos de 3 y de 7 todos los que resulten de ir sumando 21 unidades al primer simultáneo que hemos visto que era 105.

Ahora voy a averiguar qué número (por arriba y en sentido decreciente) es el primero que cumple que sea mútliplo simultáneo, naciendo del 999 y para ello, tanteando con la calculadora compruebo que el mayor número que cumple esa condición es 987 (múltiplo de 3 y de 7).

Veamos pues cuántos múltiplos simultáneos de 3 y de 7, que tengan 3 cifras, tenemos y ello se calcula dividiendo la diferencia entre el mayor y el menor por 21.

(987-105) / 21  =  42 números de 3 cifras cumplen la condición de ser múltiplos simultáneos de 3 y 7 a la vez pero ... ojo... hay que añadir uno más porque en esa diferencia no se cuenta el primer número, es decir que 987-105 = 882 y ahí tenemos 42 grupos de 21 unidades pero hemos de añadir el nº 105 que no se cuenta en esa operación y recordemos que es el primero que cumple con la condición del ejercicio.
Según eso, tendremos 43 números de 3 cifras que son múltiplos de 3 y de 7 a la vez

Ahora calculo cuántos números de 3 cifras son múltiplos de 7 y del resultado restaré esos 42 con lo que me quedaré con los múltiplos de 7 que no son múltiplos de 3 añadiendo también el primero que nunca se cuenta en la resta.

Ese cálculo se hace sencillo ya que al dividir 999 entre 7 tengo 142 de cociente y luego me queda un resto,
por tanto la cantidad máxima de múltiplos de 7 de 3 cifras es de 142+1 = 143

Efectúo la resta que te dije anteriormente y tengo:
143 - 43 = 100 números de 3 cifras son múltiplos de 7 y no lo son de 3.

Saludos.