Respuestas

2013-04-30T10:38:42+02:00

Cuando un límite tiende a un número, lo primero es sustituir x por ese número.

Si da un número, cero o infinito sería un límite determinado y habría acabado, esa sería la solución.

Si da 0/0 que es indeterminado hay que hacerlo determinado simplificando la fracción y volviendo a sustituir

 

a) lim2   (x2 + x -6) / (x - 2) = 0 / 0.

factorizamos por Ruffini x2 + x - 6 = (x - 2) (x + 3)

lim2  (x2 + x - 6) / (x - 2) = lim2 [(x - 2) (x + 3)] / (x - 2) = lim2 (x + 3) = 5

 

b) lim4 [(x - 4) / (3x2 - 11x - 4)] = 0 / 0

factorizamos 3x2 - 11x - 4 = (x - 4) (3x + 1)

lim4 [(x - 4) / 3x2 - 11x -4)] = lim4 = [(x - 4) / (x - 4) (3x + 1)] = lim4 (1 / 3x + 1) = 1 / 13

 

c) lim -5 [(x + 5) / (x2 + 3x - 10)] = 0 / 0

factorizamos x2 + 3x - 10 = (x + 5) (x - 2)

lim -5 [(x + 5) / (x + 5) ( x - 2)] = lim -5 (1 / x - 2) = 1 / -7