Respuestas

2012-03-18T21:14:59+01:00

Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones:

Con estas operaciones C tiene la estructura de cuerpo conmutativo

Elemento neutro:  Elemento opuesto:  Elemento unidad: 

Elemento inverso: , siempre que 

Nótese que el complejo (0,1) verifica , es decir, (link a explicación de extensión de R añadiendo raices de ecuaciones algebraicas )

 

 

El cuerpo de los complejos es lo que se denomina un cuerpo algebraicamente cerrado, es decir, toda ecuación algebraica (polinómica) con coeficientes complejos tiene siempre al menos una raíz compleja (y por tanto las tiene todas).

El cuerpo de los complejos no es un cuerpo ordenado. No puede darse en C una relación de orden total que respete las operaciones de suma y producto. No tiene por tanto sentido comparar dos números complejos en la manera en que estamos acostumbrados a hacer con los reales.