Respuestas

2012-11-17T22:33:18+01:00

El número pi es la constante que relaciona el perímetro de una circunferencia con la amplitud de su diámetro Π = L/D. Este no es un número exacto sino que es de los llamados irracionales, tiene infinitas cifras decimales. Ya en la antigüedad, se insinuó que todos los círculos conservaban una estrecha dependencia entre el contorno y su radio pero tan sólo desde el siglo XVII la correlación se convirtió en un dígito y fue identificado con el nombre "Pi" (de periphereia, denominación que los griegos daban al perímetro de un círculo), A lo largo de la historia, a este ilustre guarismo se le han asignado diversas cantidades. En la Biblia aparece con el valor 3, en Babilonia 3 1/8; los egipcios le otorgaban 4(8/9)²; y en China 3,1724. Sin embargo fue en Grecia donde la correspondencia entre el radio y la longitud de una circunferencia comenzó a consolidarse como uno de los más insignes enigmas a resolver. Un coetáneo de Sócrates, Antiphon, inscribió en el círculo un cuadrado, luego un octógono e ideó multiplicar la cantidad de lados hasta el momento en que el polígono obtenido ajustara casi con el anillo. Euclides precisa en sus Elementos, los pasos al límite necesarios y investiga un sistema consistente en doblar, al igual que Antiphon, el número de lados de los polígonos regulares y en demostrar la convergencia del procedimiento.
Arquímedes reúne y amplía estos resultados. Prueba que el área de un círculo es el la mitad del producto de su radio por la circunferencia y que la relación del perímetro al diámetro está comprendida entre 3,14084 y 3,14285.
En el siglo XVIII Georges Louis Leclerc, Conde de Buffon, naturalista francés, ideó un ingenioso método. llamado "La aguja de Buffon" que relaciona el número pi con el lanzamiento de una aguja sobre una superficie rayada.

27 4 27
2012-11-17T22:35:22+01:00

el nombre pi: La notación con la letra griega π proviene de la inicial de las palabras de origen griego"περιφέρεια" (periferia) y "περίμετρον" (perímetro) de un círculo,1 notación que fue utilizada primero por William Oughtred (1574-1660), y propuesto su uso por el matemático galésWilliam Jones2 (1675-1749), aunque fue el matemático Leonhard Euler, con su obra «Introducción al cálculo infinitesimal» de 1748, quien la popularizó. Fue conocida anteriormente como constante de Ludolph (en honor al matemático Ludolph van Ceulen) o como constante de Arquímedes (que no se debe confundir con el número de Arquímedes).